Kapat
Popüler Videolar
Moods
Türler
English
Türkçe
Popüler Videolar
Moods
Türler
Turkish
English
Türkçe
Design for Highly Flexible and Energy-Efficient Deep Neural Network Accelerators [Yu-Hsin Chen]
1:09:09
|
Yükleniyor...
Download
Lütfen bekleyiniz...
Type
Size
İlgili Videolar
Design for Highly Flexible and Energy-Efficient Deep Neural Network Accelerators [Yu-Hsin Chen]
1:09:09
|
UofT Robotics Institute Seminar: Vivienne Sze
1:01:15
|
CopyUrlToMD Demo
0:15
|
How to Evaluate Efficient Deep Neural Network Approaches
39:57
|
SysML 18: Vivienne Sze, Limitations of Energy-Efficient Design Approaches for Deep Neural Networks
10:04
|
ISSCC2019: Intelligence on Silicon: From Deep Neural Network Accelerators to Brain-Mimicking AI-SoCs
33:31
|
Systematic Modeling and Design of Sparse Tensor Accelerators [Nellie Wu]
46:08
|
Efficient Computing for AI and Robotics
50:51
|
Efficient implementation of a neural network on hardware using compression techniques
5:14
|
Efficient hardware implementation of deep neural network processing Marian Verhelst
13:00
|
MN-Core: Massively SIMD Deep Learning Accelerator
14:44
|
Efficient and Scalable Deep Learning
1:10:03
|
Efficient Computing for Autonomous Navigation of Miniaturized Robots
22:55
|
tinyML Talks Weiwen Jiang: Using AI to design energy-efficient AI accelerators for the edge
31:56
|
ICCD 2020 Keynote Prof. Vivienne Sze, MIT. How to Evaluate Efficient Deep Neural Network Approaches
42:43
|
ASPLOS'20 - Session 5A - Interstellar Using Halide’s Scheduling Language to Analyze DNN Accelerators
20:24
|
Google Neural Network Models for Edge Devices: Analyzing & Mitigating ML Inference Bottlenecks; PACT
13:46
|
TensorDash: Exploiting Sparsity to Accelerate Deep Neural Network Training
12:43
|
How to evaluate Deep Neural Network Accelerators
49:20
|
Bit Error Robustness for Energy-Efficient DNN Accelerators | CVPR'21 CV-AML Outstanding Paper Talk
15:02
|
Copyright. All rights reserved © 2025
Rosebank, Johannesburg, South Africa